Elements of seismology

Lets start with something easy but essential

What is the difference between

- focus
- hypocenter
- epicenter
- of the Earthquake?

 $\log E = 1.5M + 4.8$

 $\log E = 1.5M + 4.8$

How many times energy of EQ will increase if we increas M by 1?

$$\log E = 1.5M + 4.8$$

How many times energy of EQ will increase if we increas M by 1? 31.6

$$\log E = 1.5M + 4.8$$

How many times energy of EQ will increase if we increas M by 1? 31.6

$$E_1 = 10^{1.5M+4.8}$$
$$E_2 = 10^{1.5(M+1)+4.8}$$

 $\log E = 1.5M + 4.8$

How many times energy of EQ will increase if we increas M by 1? 31.6

$$E_1 = 10^{1.5M+4.8}$$
$$E_2 = 10^{1.5(M+1)+4.8}$$
$$\frac{E_2}{E_1} = 10^{1.5}$$

 $\log E = 1.5M + 4.8$

- How many times energy of EQ will increase if we increas M by 1? 31.6
- How many times energy of EQ will increase if we increase M by 2?

$$\log E = 1.5M + 4.8$$

- How many times energy of EQ will increase if we increas M by 1? 31.6
- How many times energy of EQ will increase if we increase M by 2? 1000

$$\log E = 1.5M + 4.8$$

- How many times energy of EQ will increase if we increas M by 1? 31.6
- How many times energy of EQ will increase if we increase M by 2? 1000
- What magnitude difference is needed to double EQ energy?

```
\log E = 1.5M + 4.8
```

- How many times energy of EQ will increase if we increas M by 1? 31.6
- How many times energy of EQ will increase if we increase M by 2? 1000
- What magnitude difference is needed to double EQ energy? 0.2

Richter Scale	TNT equivalent	other
1.0	0.5 kg	2 MJ
2.0	15 kg	63 MJ
3.0	0.5 t	2 GJ - WW2-era air bomb
4.0	15 t	63 GJ
4.6		an earthquake strong enough to be recorded around the globe
5.0	500 t	2 TJ
5.5	3 kt	11 TJ
6.0	15 kt	63 TJ - an "ordinary" atomic bomb
7.0	0.5 Mt	2 PJ - hydrogen bomb
7.5	2.7 Mt	11 PJ
8.0	15 Mt	63 PJ - Romeo test - the largest nuclear explosion by the US (Bikini, 1954)
8.3	50 Mt	"Tsar bomba", the larges nuclear explosion ever - USSR, Novaya Zemlya, 1961
9.0	500 Mt	the Great Sendai Earthquake, Japan, 2011
9.2	1 Gt	the Sumatra–Andaman earthquake, 2004
9.5	2.7 Gt	most powerful earthquake ever recorded - Valdivia, Chile 1960
12.5	100 Tt	Yucatan asteroid impact 64 million years ago

$$\log N = A - b \cdot M$$

A and $b\approx 1$ being constants

 $\log N = A - b \cdot M$

A and $b\approx 1$ being constants

• How many greater is the number of M quakes than that of M-1?

$$\log N = A - b \cdot M$$

- A and $b \approx 1$ being constants
 - How many greater is the number of M quakes than that of M - 1?

$$\log N_{2} - \log N_{1} = -b(M_{2} - M_{1})$$
$$\log N_{2} - \log N_{1} = -b(M - M + 1) = -b$$
$$\log \frac{N_{2}}{N_{1}} = -b$$
$$\frac{N_{2}}{N_{1}} = 10^{-b}$$
$$N_{2} = 10^{-b} \cdot N_{1}$$

In general

$$\frac{N_2}{N_1} = 10^{-b(\Delta M)}$$

$$\log N = A - b \cdot M$$

- A and $b \approx 1$ being constants
 - How many greater is the number of M quakes than that of M - 1?

$$\log N_2 - \log N_1 = -b(M_2 - M_1)$$
$$\log N_2 - \log N_1 = -b(M - M + 1) = -b$$

$$\frac{N_2}{N_1} = 10^{-b}$$
$$N_2 = 10^{-b} \cdot N_1$$

In general

$$\frac{N_2}{N_1} = 10^{-b(\Delta M)}$$

$$\log N = A - b \cdot M$$

- A and $b \approx 1$ being constants
 - How many greater is the number of M quakes than that of M - 1?

$$\log N_{2} - \log N_{1} = -b(M_{2} - M_{1})$$
$$\log N_{2} - \log N_{1} = -b(M - M + 1) = -b$$
$$\log \frac{N_{2}}{N_{1}} = -b$$
$$\frac{N_{2}}{N_{1}} = 10^{-b}$$
$$N_{2} = 10^{-b} \cdot N_{1}$$

$$\log N = A - b \cdot M$$

- A and $b \approx 1$ being constants
 - How many greater is the number of M quakes than that of M - 1?

$$\log N_{2} - \log N_{1} = -b(M_{2} - M_{1})$$
$$\log N_{2} - \log N_{1} = -b(M - M + 1) = -b$$
$$\log \frac{N_{2}}{N_{1}} = -b$$
$$\frac{N_{2}}{N_{1}} = 10^{-b}$$
$$N_{2} = 10^{-b} \cdot N_{1}$$

In general

$$\frac{N_2}{N_1} = 10^{-b(\Delta M)}$$