Fun stuff for beginning

Could you guess¹ the crude approximation of mass of the atmosphere?

 1 or rather compute somehow

Fun stuff for beginning

Could you guess¹ the crude approximation of mass of the atmosphere?

 1 or rather compute somehow

Assume you know

- **n** mean value of atmospheric pressure $\bar{p} = 1013.25$ hPa
- **n** mean radius of the earth

 $R = 6.371 \cdot 10^6$ m

n mean gravity (we need to make wrong but justified assumption that this value is not changing with height) $\bar{q} = 9.81 \,\mathrm{m\,s^{-2}}$

Assume you know

- **n** mean value of atmospheric pressure $\bar{p} = 1013.25$ hPa
- **n** mean radius of the earth

 $R = 6.371 \cdot 10^6$ m

n mean gravity (we need to make wrong but justified assumption that this value is not changing with height) $\bar{q} = 9.81 \,\mathrm{m\,s^{-2}}$

$$
p=\frac{F}{S}
$$

Assume you know

- **n** mean value of atmospheric pressure $\bar{p} = 1013.25$ hPa
- **n** mean radius of the earth

 $R = 6.371 \cdot 10^6$ m

n mean gravity (we need to make wrong but justified assumption that this value is not changing with height) $\bar{q} = 9.81 \,\mathrm{m\,s^{-2}}$

$$
p = \frac{F}{S} = \frac{mg}{S}
$$

- **n** mean value of atmospheric pressure $\bar{p} = 1013.25$ hPa
- **n** mean radius of the earth
	- $R = 6.371 \cdot 10^6$ m
- **n** mean gravity (we need to make wrong but justified assumption that this value is not changing with height) $\bar{q} = 9.81 \,\mathrm{m\,s^{-2}}$

$$
p = \frac{F}{S} = \frac{mg}{S}
$$

$$
m_{atm} = \frac{\bar{p} \cdot 4\pi R^2}{g}
$$

- **E** barometric height scale (we could treat whole atmosphere as homogenous layer of that height) $H = 8 \cdot 10^3$ m
- **mean radius of the earth** $R = 6.371 \cdot 10^6$ m
- \blacksquare mean density of atmosphere $ρ_{atm} = 1.3$ kg m⁻³

- **E** barometric height scale (we could treat whole atmosphere as homogenous layer of that height) $H = 8 \cdot 10^3$ m
- **mean radius of the earth** $R = 6.371 \cdot 10^6$ m
- \blacksquare mean density of atmosphere $ρ_{atm} = 1.3$ kg m⁻³

$$
m_{atm} = V \cdot \rho_{atm}
$$

- **E** barometric height scale (we could treat whole atmosphere as homogenous layer of that height) $H = 8 \cdot 10^3$ m
- **mean radius of the earth** $R = 6.371 \cdot 10^6$ m
- \blacksquare mean density of atmosphere $ρ_{atm} = 1.3$ kg m⁻³

$$
m_{atm} = V \cdot \rho_{atm} = \frac{4}{3}\pi \left(\left(R + H \right)^3 - R^3 \right) \rho_{atm} \simeq \frac{4}{3}\pi R^2 H \rho_{atm}
$$

- **E** barometric height scale (we could treat whole atmosphere as homogenous layer of that height) $H = 8 \cdot 10^3$ m
- **mean radius of the earth** $R = 6.371 \cdot 10^6$ m
- \blacksquare mean density of atmosphere $ρ_{atm} = 1.3$ kg m⁻³

$$
m_{atm} = V \cdot \rho_{atm} = \frac{4}{3}\pi \left(\left(R + H \right)^3 - R^3 \right) \rho_{atm} \simeq \frac{4}{3}\pi R^2 H \rho_{atm}
$$

$$
m_{atm} = \frac{\bar{p} \cdot 4\pi R^2}{g}
$$

Barometric formula

$$
dp = -\rho g dh
$$

$$
pV = RT
$$
 Clapeyron formula

$$
p=p_0e^{-\frac{\rho_0 g}{p_0}h}
$$

